HEXIS Exzellente Brennstoffzellen-Technik

Fuel cell system development at HEXIS

0

Technological Status and Economic Potential of Fuel Cell Technology

Outreach Event of the IEA Advanced Fuel Cell Implementing Agreement

23rd April 2015 | Andreas Mai

Introduction on the company

HEXIS Exzellente Brennstoffzellen-Technik

- Business: Development, manufacturing and bringing to market of SOFC-based micro-CHPs
- Hexis fuel cell activities started in the 90th at Sulzer, more than 20 years of experience on SOFC systems & components
- Hexis AG (Winterthur (CH), Headquarter) and Hexis GmbH (Konstanz (D), subsidiary)
- Owners: 50 % Swiss foundation since 10 / 2012: 50 % Viessmann Group VIESMANN

40 employees

Concept of Galileo

Fuel Cell Heating Appliance Galileo 1000 N Focus on Matching Customer's Energy Demand

Tailored development for single family houses and small apartment buildings

Fuel Cell Heating Appliance Galileo 1000 N HEXIS-SOFC Principle

Micro-CHP Galileo 1000 N Specifications

Fuel cell

Electrical output1 kWel (AC, net)Thermal output1.8 kWthElectrical efficiency35 % (AC, net)Overall efficiency95 % (LHV, T_{Return} = 30 °C)

Back-up burner included

Dimensions620 x 580 x 1640 mmWeight210 kg

\rightarrow Designed to fit to single family and similar houses

Stack concept

Open, radial system

- Post-combustion zone surrounds the stack
 → Electrolyte supported cells for redox stability
- Operation temperature 800 900°C
- 100 cm² active area
- Low pressure drop between gas and air
 → low requirements on sealings
 → No distinctive sealings
- Highly integrated with heat exchanger
- Interconnects: powder metallurgical CFY
- easy assembly
- \rightarrow Keep it as simple as possible.

Micro-CHP Galileo 1000 N Features

Environment

Lowest emissions of pollutants, very quiet

Ressources

 Highly efficient fuel utilisation, high overall efficiency – demonstrating high-end CHP

Customer demands

- Customer tailored supply of electricity and heat
- Coverage of heat demand, even at blackouts
- Easy installation in already existing house infrastructure
- Web-based services for end-customers and installers: heating control, maintenance support
- 7-years all-inclusive warranty sold with the system

Targeted system lifetime: 20 years Targeted stack lifetime: 7-8 years

Production Infrastructure

Cell production ► stack assembly ► Pilot manufactory for entire fuel cell system

Cells: Capacity for up to 100'000 cells/year (\rightarrow 2 MW, for more than **1000 systems** per year)

Stacks: Capacity for approx. 5-8 stacks and fuel cell modules/day (> 1000 modules per year)

Systems: Capacity for 2-3 systems/day (approx. 500 systems per year)

CE certified assembly and end control

Customer ready fuel cell system to be delivered

Energy scenarios in Switzerland Production and consumption of electricity 2010 and 2050

[Quelle: BFE-Statistik, BFE-Szenario «Neue E-Politik», Berechnungen Hanspeter Guggenbühl in die «Energiewende»]

Demonstration projects and "real-life" systems

- Preparation of the market launch of fuel cell micro-CHPs 220 systems (in 3 Generations) delivered by Hexis in the project
- Average operating time per year (SFH): approx. 5000 h
- Longest fuel cell lifetime up to now: >15'000 h (w/o service), many stacks with 5'000 – 10'000 h
- Availability in SOFC-operation: 98% to > 99%
- Reduction of CO2-emissions per household by 1 to 1.5 t p.a. (german energy mix)

PHAROS: Swiss project, 5 Galileo installedClosest Galileo here in Zürich (approx. 1 km away)

today (14:22): 1195 W DC

Marketing Galileo 1000 N European Joint Project ene.field*

- Europe-wide demonstration test funded by European Commission (E.C.), where HEXIS intends to deliver and to support 100 micro FC-CHP systems
- Basic idea
 - Test project to install and test ~1'000 micro FC-CHP in European countries from 2012-2017
 - Increase number of fc system production, prepare and develop local markets
- HEXIS deals with the E.C., i.e. no effort for customer (ESCo and installer) as well as end customer.
- HEXIS has delivered 15 systems, yet.
- \rightarrow More Information on www.enefield.eu

Results from testing Galileo

Lifetime: steady-state degradation Test on Galileo system

- No progressive degradation till 37000 h → some extrapolation for newer stacks
- Stack operation stopped in May 2012

Life time: stability against cycles Results of a 5-cell stack

operated with natural gas (4 g/h per cell), 900°C

- No measureable degradation due to 100 full redox-cycles (1 h re-oxidation, voltage < 10 mV)
- After 105th cycle, degradation sets in
- Redox Cycling stability much more than sufficient for 8 years of stack operation

- No visible degradation due to 50 complete on-off cycles, 20 modulations and 20 inverter disruptions
- Simulation of "planned" and "unplanned" on-off cycles, to different ending temperatures
- "Unplanned": simulation of e.g. gas interruption or component failure
- Should be OK for 8 years stack lifetime
- No signs of accelerated degradation of end-layers, repeated with similar behaviour

Lifetime: steady-state degradation Test on 5-cell stack

operated with natural gas (4 g/h per cell), 900°C

- Power density approx. 0.2 W/cm²; electrical efficiency approx. 39 % DC
- Voltage Degradation 0.5 % / 1000 h over 25000 h
- Fits well to the data measured on system level
- If degradation stays like this, stack lifetime of 40000 h can be achieved

Lifetime: steady-state degradation Lab-test on Galileo system

- Electrical efficiency 35 % AC, netto
- Degradation approx. 10 W/1000 h → approx. 0.8 % / kh
- Other tests with similar behaviour
- International and national collaborations have been very important for the understanding of degradation effects and implementation of improvements, e.g. the Swiss project SOF-CH ESC supported by SFOE

Increasing electrical efficiency: STR instead of CPO Results of a 5-cell stack

- CPOx: electrical efficiency approx. 45 % (DC) with ≈230 mW/cm²
- STR: electrical efficiency approx. 55% (DC) with ≈280 mW/cm²
- → Reforming is the major parameter to increase the electrical efficiency in the Hexis system
- ightarrow But negative effects on complexity, robustness, reliability and costs can result
- → Funded project supported by SFOE with the aim to implement STR as an alternative on system level a has just started

Résumé and future

Résumé Technical status & market

- Technical targets achieved on a statistical basis
- More than 250 Galileo systems built and operated (lab, field, market)
- Far more than 2 Mio. hours of operation experiences
- For SOFC very good cycling stability shown (also «unplanned»)
- Further important improvements on lifetime, reliability, robustness, etc.
- Simple installation verified by installers, broad application spectrum
- Challenges: cost; demonstration of predicted / extrapolated lifetimes
- → Technical readiness for pilot market entry achieved
- Market introduction started 2013 (German-speaking part of Switzerland, selected partners in Germany)

Fuel cell heating appliance Galileo 1000 N Future

- Expected / predicted / extrapolated lifetimes have to be demonstrated
- Besides further increase of lifetime and performance, cost reduction is the important current task
- Next system generation will include know-how & components from Viessmann and will be sold via the normal Viessmann distribution channels
- Steam reforming and higher efficiencies will be further topics for the future

Thank you for listening!

Dr. Andreas Mai, HEXIS AG Zum Park 5 | 8404 Winterthur | Switzerland T +41 52 262 63 12 | F +41 52 262 63 33 andreas.mai@hexis.com | www.hexis.com

a

Fuel Cell Heating Appliance Galileo 1000 N Voltage Profile mCHP and HP in a Grid

(existing suburban grid with 170 houses)

→ 30% (51/170 houses) Heat Pumps in exemplary suburban grid cause undervoltage outside EN 50160 regulations.

→ In a grid with 20% Heat Pumps, a similar number of CHPs reduce under-voltage issues significantly.

Voltage issues due to 30% penetration with Heat Pump can be solved with CHP. Rough Guide: 1 kW_{el} Fuel Cell CHP per 1 kW_{el} Heat Pump

[Quelle. BBT, 2013]